
Journal of Computational Physics 193 (2003) 306–316

www.elsevier.com/locate/jcp
Event-driven molecular dynamics in parallel

S. Miller a,*, S. Luding a,b

a Institut f €uur Computeranwendnungen 1, Universit€aat Stuttgart, Pfaffenwaldring 27, Stuttgart D-70569, Germany
b Particle Technology, DelftChemTech, TU Delft, Julianalaan 136, 2628 BL Delft, The Netherlands

Received 3 February 2003; received in revised form 5 August 2003; accepted 25 August 2003
Abstract

Although event-driven algorithms have been shown to be far more efficient than time-driven methods such as

conventional molecular dynamics, they have not become as popular. The main obstacle seems to be the difficulty of

parallelizing event-driven molecular dynamics. Several basic ideas have been discussed in recent years, but to our

knowledge no complete implementation has been published yet. In this paper we present a parallel event-driven al-

gorithm including dynamic load-balancing, which can be easily implemented on any computer architecture. To simplify

matters our explanations refer to a basic multi-particle system of hard spheres, but can be extended easily to a wide

variety of possible models.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Event-driven molecular dynamics is an effective algorithm for the simulation of many-component sys-

tems, which evolve independently, except for discrete asynchronous instantaneous interactions. As an

example we will discuss a system consisting of N hard spheres in a box with periodic boundary conditions,

but the algorithm can be extended to particles with different shapes and interacting via any piecewise

constant potential or to completely different problems as well [1].

Event-driven molecular dynamics processes a series of events asynchronously one after another. A

straightforward but simplistic approach [2] updates all particles at each event; many advanced versions are

available in textbooks [3,4]. We base our algorithm on the sophisticated algorithm as presented by [5],
which updates only those particles involved in an event. It has been successfully applied to many different

problems, among them granular gases [6,7], polymer chains [8], tethered membranes [7,9], protein folding

[10], and battlefield models [11].

In many physical systems the duration of the interaction of the components, e.g., the collision of two

particles, is negligible compared to the time between these interactions. The simulation of such systems with
*Corresponding author. Fax: +49-711-685-3658.

E-mail addresses: stefan.miller@ica1.uni-stuttgart.de (S. Miller), S.Luding@tnw.tudelft.nl (S. Luding).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.jcp.2003.08.009

mail to: stefan.miller@ica1.uni-stuttgart.de


S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316 307
traditional time-driven molecular dynamics is highly inefficient. Instead, it is straightforward to consider

the interactions as instantaneous events and solve the problem with an event-driven algorithm.

One reason why event-driven molecular dynamics has not become as popular as conventional time-
driven molecular dynamics is the fact that parallelization is extremely complicated. The paradoxical task is

to algorithmically parallelize physically non-parallel dynamics. Nevertheless some ideas and basic con-

siderations about the parallelization have been proposed in [12]. They are especially suited for shared

memory computers, but can be transferred to distributed memory architectures as well [13]. Apart from

those ideas no full and general implementation of a parallelized algorithm including load-balancing has

been published yet, to our knowledge. In this paper we present an algorithm, which is based on those ideas,

but is enhanced and completed at several points. It can be implemented with generic tools such as MPI, and

therefore it is suited for shared and distributed memory architectures alike.
In Section 2 we explain the details of the implementation of event-driven molecular dynamics. The

parallelization of the algorithm is presented in Section 3 and a summary is given in Section 4.
2. Event-driven molecular dynamics

Section 2.1 gives an outline of the main routine of the algorithm, which is composed of four steps (see

Fig. 1). Then the most important data structures are introduced in Section 2.2 and hereby steps 1 and 4 are
treated. Steps 2 and 3 are discussed in Sections 2.3 and 2.4, respectively. Finally, Section 2.5 deals with

performance issues.

2.1. Outline

Event-driven molecular dynamics processes a series of discrete events. In a system of hard spheres, events

typically refer to instantaneous collisions, involving exactly two particles. Only these two particles are

processed; the state of the other particles remains unchanged. So the state information of most particles
refers not to the current time, but to a different point of time in the past.

Event processing includes a state update for the concerned particles (see Section 2.3) and the calculation

of the next future events for those particles (see Section 2.4). An outline of the algorithm can be seen in Fig. 1.

The serial algorithm only adds to this event processing loop an initialization step at the beginning and

periodic data output. The parallel algorithm needs several additional routines, which are described in

Section 3.

2.2. Data organization

The algorithm maintains two data fields, particle states and event list, which contain exactly one entry

per particle (see Fig. 2). The former refers to the past of a particle, the latter to its future

(,8i : state time t0ðiÞ6 current time6 event time tevðiÞ).
Fig. 1. Outline of the main routine of the algorithm.



Fig. 2. Data structures for N particles.

308 S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316
A particle state consists of the physical state of a particle, such as position, velocity, etc. immediately

after the most recently processed event of that particle, the point of time of that event, an event counter (see

Section 2.3), a cell number (see Section 2.4), and a global particle number, which is needed to identify

particles on different processes (see Section 3).

The event list associates with every particle an event in the future. The data units of the event list consist
of event time, event type, event partner, and a copy of the event counter of the partner.

All the events are scheduled in a priority queue which is usually implemented as an implicit heap tree

[5,12,14], but other data structures with similar characteristics are possible, too [14,15]. A heap tree is a

binary tree with the following ordering rule: Each parental node has higher priority than its children; the

children themselves are not ordered. So the root node always has highest priority, i.e., the earliest event

time. To get the next event from the priority queue takes computational costs of Oð1Þ. Insertion of a new

event in the priority queue is done with costs of OðlogNÞ.
This data organization is more efficient compared to the algorithm in [5,12], since no double buffering is

needed here, however, the basic ideas of [5,12] are still valid.

2.3. State update

When a collision between two particles is processed, the states of these particles are updated from a point

of time in the past to the current simulation time. First, the positions and velocities of the particles im-

mediately before the collision can be derived by inserting the old state in the equation of motion. As a result

of this first step the particles are touching each other. Then the interaction between the particles takes place
and yields new particle velocities. Now, the event counter is increased, the state time is updated to the

current simulation time, and the values of the positions and velocities immediately after the collision are

stored in the state array.

A typical collision rule for hard spheres [16,17] looks like

v01=2 ¼ v1=2 �
1þ r
2

k̂k � ðv1
�

� v2Þ
�
k̂k;

where primes indicate the velocities v after the collision, k̂k is a unit vector pointing along the line of centers

from particle 1 to particle 2, and r denotes the restitution coefficient. For the performance tests in the

subsequent chapters we have used the simplest case without dissipation (r ¼ 1). 1

If the event partner has undergone collisions with other particles between the scheduling and the pro-

cessing of the event, it becomes invalid. Validity of event partners can be checked by comparing the event

counter of the partner to the copy in the event list. If they do not match, the partner collided with other

particles in the meantime, and the scheduled collision is no longer valid. Then event processing only refers

to one particle and the state update described above only consists of the particle motion; no collision is

performed. After that the algorithm continues in the normal way, i.e., the next event for the particle will be

calculated and scheduled in the priority queue.

Note that the algorithm in [5,12] uses a different strategy to detect invalid event partners: The algorithm
checks at each collision if an event partner becomes invalid and if so marks this partner. This strategy is less
1 Soft spheres can be approximated via particles consisting of concentric shells with piecewise constant interaction potentials.



S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316 309
efficient, because sometimes the same partner is invalidated several times. Besides, in the parallel algorithm

additional communication between different processes might be necessary.

2.4. Event calculation and linked cell structure

When an event has been processed, new events for the particles involved in that event have to be cal-

culated. In simulations of hard spheres this means the calculation of possible future collisions. If the

particles move on ballistic trajectories

riðtÞ ¼ riðt0Þ þ viðt0Þðt � t0Þ þ 1
2
gðt � t0Þ2;

two particles 1 and 2 will collide at time t12:

t12 ¼ t0 þ
�
� r12 � v12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr12 � v12Þ2 � ðr212 � ðR1 þ R2Þ2Þv212

q ��
v212;

where v12 ¼ v2ðt0Þ � v1ðt0Þ and r12 ¼ r2ðt0Þ � r1ðt0Þ are the relative velocities and positions of the particles at

time t0 and Ri the radii of the particles. If t12 is imaginary or smaller than t0, the particles will not collide.

If the algorithm would have to check for collisions with all other particles, performance would be very

poor for large numbers N of particles. So we divide simulation space in C cells with equal sides. Each

particle belongs to the cell in which its center lies. If the cell size is larger than the maximal interaction

length of the particles, i.e., the particle diameter in the case of hard spheres, event calculation has to check

for possible collisions of two particles only if they belong to the same cell or if their cells are neighbors. (One
square cell has eight neighbors in 2D and a cube has 26 neighbors in 3D.)

However, the algorithm has to keep track of cell changes. So additional events, namely cell changes,

come into play. They are treated just in the same way as the collision events; only the collision partner is the

boundary of a cell. The difference with a collision event is that only one particle is involved in a cell change

and the velocity of the particle does not change at event time. Cell changes at the boundary of the simu-

lation space require that the position vector jumps to the opposite side of the simulation volume due to the

periodic boundary conditions.

2.5. Optimal cell numbers

On average there are 3D N=C � 1 particles in the neighborhood of each particle. So in the limit C � N ,

this number becomes very large and many possible events have to be calculated after each collision. On the

other hand, if C � N , then each particle has to cross many cell boundaries between a collision of two

particles, and thus more events have to be treated to complete the simulation. These two contributions

compete with each other, the first one is proportional to ðC=NÞ�1
and the second one is proportional to

ðC=NÞ1=D. Fig. 3 (left) shows a broad minimum of the simulation time for low densities at the optimal cell
number C=N � 1:5 in 2D and C=N � 8 in 3D. So the program can choose an optimal cell number before

the calculation starts. Note that in the high density limit, especially in 3D, the optimal cell number cannot

be reached, because the size of the cells has to be larger than the particle diameter (see Fig. 3 (right)). So, in

this case C should simply be chosen as big as possible.
3. The parallel algorithm

In Section 3.1 we demonstrate how parallelization can be achieved via domain decomposition and

dynamic load-balancing. Then, in Section 3.2 we point out the difficulties that arise in parallelizing this



Fig. 3. Simulation time tCPU (arbitrary units) plotted against the number C of cells in 2D and 3D with the serial algorithm. Used are

N ¼ 10,000 particles (2D) and N ¼ 8000 particles (3D). The left figure shows low densities (volume fraction m ¼ 0:008 (2D) and

m ¼ 0:0005 (3D)), the right figure shows high densities (m ¼ 0:8 (2D) and m ¼ 0:5 (3D)).

310 S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316
algorithm and the necessity of state saving and error recovery (see Section 3.3). In Section 3.4 the parallel

algorithm is explained in detail. Finally, some performance issues are discussed in Section 3.5.

3.1. Domain decomposition and dynamic load-balancing

Parallelization is achieved via domain decomposition. Each cell is affiliated with a process, but this

affiliation can change during the simulation if the load of the processes has to be rebalanced.
In order to realize maximal performance, the computational load should be distributed equally among

the processes. If inhomogenities exist from the very beginning or emerge during the simulation, dynamic

load-balancing becomes important. A typical example is cluster formation in granular gases [6,18].

Domain decomposition should thus take into account the following points: First, the load of the pro-

cesses should be distributed homogeneously. Second, in order to minimize process communication, the

border area of each process domain should be as small as possible, which implies that the ideal process

domains are squares or cubes. Third, a simple and fast function that assigns a cell to a process and vice

versa is required.
We meet these demands in the following way: Cell numbers are assigned to cell coordinates in a tree-like

structure, see a small 2D-example in Fig. 4. (Note that a realistic example has thousands or millions of

cells.) These cell numbers are obtained by interleaving all the bits 1 to k of the cell coordinates:

z½k�; y½k�; x½k�; . . . ; z½1�; y½1�; x½1�. The result is a cell number in the range 0 to 2kD � 1. (For convenience these

numbers are increased by one in Fig. 4.) 2

Then, a block of 2n consecutive cell numbers is affiliated with each process, where n can be different for

each process. Suppose the cells 1–16 in Fig. 4 should be distributed over four processes. If a lot of particles

are aggregated in the lower right corner, load-balancing could result in the following layout: Process I
is affiliated with cells 1–8, process II with cells 9–12, process III with cells 13–14, and process IV with cells

15–16.

Every now and then the load of the processes has to be checked. A reasonable and simple measure of the

load is the number of particles or the number of collisions in the process domain. If a restructuring of the
2 An example: The bottom left cell in Fig. 4 with the coordinates 0/3 (bit pattern 000/011) has the number corresponding to the bit

pattern 001010, i.e.,10. Incrementation by one yields the cell number 11.



Fig. 4. Cell numbering layout in 2D with an example of domain decomposition. Inhomogeneous load distribution leads to unequal

domain sizes.

S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316 311
domain decomposition would result in a significantly better load-balance, three processes, respectively,

exchange information about their particle and cell data, so that two light-weight neighboring processes can

merge their domains and a heavy-weight process can split its domain in two halves. In the example above, if

the initially inhomogeneous system becomes homogeneous, this procedure could result in the merging of
the domains of processes III and IV and a splitting of the domain of process I. Process II does not par-

ticipate in this rebalancing, but it should be informed that its neighbor processes have changed, of course.

In the end the layout would look like that: Process I is affiliated with cells 1–4, process II with cells 9–12,

process III with cells 5–8, and process IV with cells 13–16.

3.2. Causal order

A parallel approach to simulate asynchronous events has to make use of the concept of local times. Each
process handles the events in its domain and thereby increases the local simulation time. When particles

cross domain boundaries, the affected processes communicate with each other and events are inserted into

or removed from the event lists of the processes. If the event time of a newly inserted particle is less than the

local simulation time, causality is violated, because a collision of that particle with another one, which has

already been processed, could have been missed.

In general, there are two strategies to circumvent this problem: In a conservative approach only those

processes that are guaranteed not to violate causality are allowed to handle their events, the rest of the

processes has to idle. In an optimistic approach the processes do not have to idle. If causality is violated, a
complex rollback protocol which corrects the erroneous computations has to be executed. Whether a

conservative approach is efficient or not depends highly on the maximal event propagation speed.

Unfortunately, in event-driven molecular dynamics there is no upper limit for the speed of events

propagating along a chain of particles [12], even if the particles themselves are moving very slowly. In other

words, in the conservative case one process is operating and all others are idling and we are back to the

serial algorithm. So we are left with the optimistic strategy and have to undertake the task of implementing

a rollback protocol.

3.3. State saving and error recovery

When a causality error is detected, the simulation is restarted from the latest saved state. So the algo-

rithm has to make a backup copy of the simulation data periodically and has to ensure that there is no

latent causality error in this backup. The latter is guaranteed if all processes are synchronized at saving

time. This means that only those processes are allowed to continue their computations whose local sim-

ulation times have not yet reached synchronization time. Note that there are other operations, like, e.g.,

data output or load-balancing, which require periodic synchronization anyway. Besides, without syn-
chronization the local simulation times tend to drift apart, which makes causality errors very likely [19].



312 S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316
To find the optimal backup interval, we make use of an adaptive strategy. If no causality error turns up

between two successive save operations, the interval increases, otherwise it decreases. If other operations

trigger synchronization, this occasion is used for state saving, too, of course.
If a causal error occurs, all processes perform a rollback to the saved state. Furthermore a synchroni-

zation barrier is scheduled for the time when the error occurred. This prevents the same causality error from

happening again. Of course, another error could occur at an earlier point of time. Then the simulation

would perform another rollback and an earlier resynchronization would be scheduled.

For comparison the algorithm described in [12] needs two backup copies of the simulation data. So our

strategy reduces memory consumption further by a factor 3/2.

3.4. Border zone and process communication

The border zone (in [12] it is called insulation layer) consists of the cells Cborder whose neighbors belong to

a different process. With the domain decomposition described in Section 3.1, there is always a ‘‘monolayer’’

of border zone cells at the boundary of a process area.

Each process thus maintains a list of virtual border zone cells which actually belong to its neighboring

processes and a list of virtual particles residing in the virtual border zone cells. Those virtual particles can

act as partners for real particles. But no events are calculated for them directly and they are not represented

in the event list, since they are real particles on another process. The events are already calculated there and
will be communicated to the adjacent processes.

However, it is highly inefficient for a process to communicate after every event with its neighbors. So the

parallel algorithm is designed in a stepwise manner (see Fig. 5): Each computing step lasts until the next

event in the border zone of a process, which is obtained in the following way: An event is associated with

each particle. Each event belongs to a cell (or two adjacent cells, if two colliding particles reside in different

cells or if a particle changes from one cell to another). The smallest event time in a cell is called the cell time

tcell. These cell times are stored in an additional priority queue similar to the event list in Section 2.2. This

list contains the scheduled cell times for all local border zone cells and returns the minimum time
tstep ¼ mincðtcellðcÞÞ ¼ tcellðc�Þ which belongs to cell c�.

Now, this time is used as the preliminary length of the calculation step. But firstly, the neighboring cells

of c�, if located on other processes are checked. If they have scheduled an even earlier event, tstep will be

shortened to that event. The communication is done in the following way: Each process sends c� and tcellðc�Þ
as a query to the neighboring processes, which check the adjacent cells for their event times and reply with

the minimum thereof. If this answer is smaller, then it is used as tstep instead (see Fig. 5, step 1). Periodic
Fig. 5. Outline of the parallel algorithm.



S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316 313
tasks like data output, load-balancing or state saving, which require synchronization of the processes can

shorten tstep even more (see Fig. 5, step 2).

One could think of more rigid policies to determine the length of a step, see, e.g., [12]. We have also tried
other strategies that reduce the number of rollbacks. But on the other hand, they reduce parallelism, too. A

large part of the processes are idling, the communication overhead increases, and the overall performance

goes down.

After the communication phase, parallel event processing starts and proceeds until the calculated point

of time tstep (see Fig. 5, step 3), i.e., on average OðC=CborderÞ iterations are processed. If the algorithm en-

counters an earlier border zone event which has not been anticipated, the event processing step is stopped

immediately to prevent the occurence of a causality error. But normally, the last processed event is a regular

border zone event. Then, after the last particle state update, the state information has to be communicated
to the neighboring processes.

When a process has finished its computing step, it reads the particle state messages that it has re-

ceived during this step and adapts its data structures accordingly (see Fig. 5, step 4). Real particles can

only be affected as collision partners of virtual particles. For a virtual particle there are several pos-

sibilities: A virtual particle can become a real particle by changing from one process to another, it can

remain a virtual particle, but with a different position, velocity or cell number, or finally it can emerge

on or disappear from the virtual particle list, because it enters or leaves the border zone, respectively. If

a virtual particle becomes real and newly calculated events for this particle violate causality, i.e., they
are happening before the local simulation time, an error is signaled. Moreover, the processes check the

border zone cell times and compare them with the replies to their neighboring processes. If the actual

cell time is smaller than the reply (which corresponds to the current time of the neighbor process), a

causality error has already happened with high probability, because a collision has been missed on the

neighbor process, and an error is signaled, too (see Fig. 5, step 5).

If no error is detected, the simulation continues with the next step. Otherwise a global rollback is per-

formed (see Fig. 5, step 6) and the erroneous simulation step is restarted from the latest saved state (see

Section 3.3). To prevent the reappearance of the same error, a synchronization barrier is issued at the time
when the error occurred.

Other synchronization barriers can stem from periodic tasks such as state saving, load-balancing or data

output (see Fig. 5, step 7).
Fig. 6. Speed-up for different numbers P of processes in 2D. N ¼ 5	 105 particles, volume fraction m ¼ 0:3, C ¼ 10242 � 106 cells. The

dashed line has a slope of 0.49. The data point for one process deviates from the dashed line, because the serial algorithm has no

communication overhead. Note the logarithmic axes.



314 S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316
However, most of all parallel loops do not include synchronization of the processes, but only com-

munication between them.

3.5. Parallel performance

First of all, parallelization imposes several performance penalties on the algorithm, among them com-

munication overhead, idle time, state saving, and rollbacks after erroneous computation steps. On the other

hand, the computational costs are shared among several processes. If the latter outweighs the former,

parallelization can be considered successful. The same holds true for memory requirements. State saving

makes a copy of the whole system state and therefore doubles the memory usage. But here as well par-

allelization combines the limited resources of single processes.
Figs. 6 and 7 show that the speed-up of the parallelization (i.e., the reciprocal of the simulation

time) for fixed system size is approximately proportional to P 1=2, where P is the number of processes.

Furthermore, as shown in Fig. 8, the parallelization is also scalable if the number of processes is chosen
Fig. 7. Speed-up for different numbers P of processes in 3D. N ¼ 2	 106 particles, volume fraction m ¼ 0:25, C ¼ 1283 � 2	 106 cells.

The dashed line has a slope of 0.45.

Fig. 8. Speed-up for different numbers P of processes in 3D. N=P ¼ 5	 104 particles per process, volume fraction m ¼ 0:2. The dashed

line has a slope of 0.50.



Fig. 9. Memory requirements per process for different numbers P of processes in 3D. The points represent the measured values for

N ¼ 2	 106. The curves are obtained by a simple estimate c1N=P þ c2ðN=P Þ2=3 þ c3N , where the first term refers to real particles, the

second term to virtual particles, and the third term to global data. The data point for one process deviates from the estimated value,

because the serial algorithm has no need for state saving.

S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316 315
proportional to the system size. There are deviations for small P when the effect of the parallelization

overhead is large. In addition, it has been shown in [12] that the error recovery method presented in

Section 3.3 is not scalable for P ! 1. But for practical purposes, at least until P ¼ 128, the algorithm

remains scalable.

We have tested the parallel algorithm on a computer cluster with Pentium III 650 MHz processors and a
1.28-GBit/s switched LAN. On a supercomputer with optimized communication hardware, scalability

should be even better.

For real physical applications with more than 102 collisions per particle, the maximal number of particles

typically is limited by both available memory (see Fig. 9) and computing time to about 106 particles per

process, i.e., a total number of particles of about 108.
4. Summary

We have demonstrated how to parallelize event-driven molecular dynamics successfully. Our algorithm

is based on some ideas from [12], i.e., we have used an optimistic parallelization approach which performs a

rollback protocol if a causality error occurs. But the algorithm is enhanced in several ways:

Firstly, we have implemented dynamic load-balancing, which makes simulation of inhomogeneous

systems possible. Computing time is further reduced by an adaptive linked-cell structure which determines

the optimal cell sizes.

Secondly, we have transferred the shared memory approach of [12] to distributed memory architectures
as well. The parallelization has been realized with MPI. In order to minimize idle time, we have made use of

asynchronous communication, i.e., send and receive actions are decoupled from each other. In addition, the

amount of communication is limited to a minimum: The event processing can continue steadily until a

border zone event takes place on the local process or is expected to take place on a neighboring process.

Only then the calculation has to be interrupted in order to communicate with the neigboring processes. So,

even on a cluster with rather poor communication hardware, parallelization yields a speed-up proportional

to P 1=2 – at least up to P ¼ 128 parallel processes.



316 S. Miller, S. Luding / Journal of Computational Physics 193 (2003) 306–316
Third, we have optimized the data structure of the algorithm. With event-driven molecular dynamics in-

sufficient memory is often a more serious problem than computing time. In total our optimizations reduce

memory requirements to one-third as compared to the method proposed in [12].
This enabled us to perform simulations of real physical problems with up to 108 particles.
References

[1] B.D. Lubachevsky, Fast simulation of multicomponent dynamic systems, Bell Labs. Tech. J. 5 (2) (2000) 134–156.

[2] B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31 (2) (1959) 459–466.

[3] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1987.

[4] D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 1995.

[5] B.D. Lubachevsky, How to simulate billiards and similar systems, J. Comput. Phys. 94 (1991) 255–283.

[6] S. Luding, H.J. Herrmann, Cluster growth in freely cooling granular media, Chaos 9 (3) (1999) 673–681.

[7] S. Luding, From microscopic simulations to macroscopic material behavior, Comput. Phys. Commun. 147 (2002) 134–140.

[8] S.W. Smith, C.K. Hall, B.D. Freeman, Molecular dynamics for polymeric fluids using discontinuous potentials, J. Comput. Phys.

134 (1997) 16–30.

[9] S. Miller, S. Luding, G. Gompper, Tethered membranes revisited (2003), in preparation.

[10] N.V. Dokholyan, S.V. Buldyrev, H.E. Stanley, E.I. Shakhnovich, Molecular dynamics studies of folding of a protein-like model,

Fold. Des. 3 (1998) 577–587.

[11] D.M. Nicol, Mapping a battlefield simulation onto a message-passing parallel architecture, in: SCS Multiconference, Simulation

Series, vol. 19, SCS, 1988, pp. 141–146.

[12] B.D. Lubachevsky, Simulating billiards: serially and in parallel, Int. J. Comput. Simul. 2 (1992) 372–411.

[13] M. Mar�ıın, Event-driven hard-particle molecular dynamics using bulk-synchronous parallelism, Comput. Phys. Commun. 102

(1997) 81–96.

[14] D.E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1968.

[15] M. Mar�ıın, P. Cordero, An empirical assessment of priority queues in event-driven molecular dynamics, Comput. Phys. Commun.

92 (1995) 214–224.

[16] S. Luding, Global equation of state of two-dimensional hard sphere systems, Phys. Rev. E 63 (2001) 042201–042204.

[17] S. Luding, Liquid-solid transition in bi-disperse granulates, Adv. Complex Syst. 4 (4) (2002) 379–388.

[18] S. Luding, Structures and non-equilibrium dynamics in granular media, C. R. Acad. Sci. 3 (2002) 153–161.

[19] G. Korniss, M.A. Novotny, P.A. Rikvold, H. Guclu, Z. Toroczkai, Going through rough times: from non-equilibrium surface

growth to algorithmic scalability, Mater. Res. Soc. Symp. Proc. Ser. 700 (2001) 297–308.


	Event-driven molecular dynamics in parallel
	Introduction
	Event-driven molecular dynamics
	Outline
	Data organization
	State update
	Event calculation and linked cell structure
	Optimal cell numbers

	The parallel algorithm
	Domain decomposition and dynamic load-balancing
	Causal order
	State saving and error recovery
	Border zone and process communication
	Parallel performance

	Summary
	References


